卷积的本质是什么?

社会网编2023-03-12 10:572160

  卷积的本质及物理意义 分三个部分来理解: 1. 信号的角度 2. 数学家的理解(外行) 3. 与多项式的关系 卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。因为是对模拟信号论述的,所以常常带有繁琐的算术推倒,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢? 卷积表示为y(n) = x(n)*h(n) 使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成y(0),y(1),y(2) and so on; 这是系统响应出来的信号。

   同理,x(n)的对应时刻的序列为x(0),x(1),x(2)。。。and so on; 其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。

   假设0时刻系统的响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(n-m),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。

   再拓展点,某时刻的系统响应往往不一定是由当前时刻和前一时刻这两个响应决定的,也可能是再加上前前时刻,前前前时刻,前前前前时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(n-m)中的m的范围来约束的。

  即说白了,就是当前时刻的系统响应与多少个之前时刻的响应的“残留影响”有关。 当考虑这些因素后,就可以描述成一个系统响应了,而这些因素通过一个表达式(卷积)即描述出来不得不说是数学的巧妙和迷人之处了。 。

  chinaunix。net/u2/76475/showart_1682636。html ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 卷积是人为定义的一种运算,就是为了计算的方便规定的一种算法。

  两个函数普通乘积的积分变换(傅里叶变换与拉普拉斯变换)与这两个函数积分变换的卷积建立了关系,使我们只要会求两个函数的变换,利用卷积就可以求这两个函数乘积的变换。 卷积在数据处理中用来平滑,卷积有平滑效应和展宽效应。 谈起卷积分当然要先说说冲击函数----这个倒立的小蝌蚪,卷积其实就是为它诞生的。

  “冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。古人曰:“说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明“冲击函数”。在t时间内对一物体作用F的力,我们可以让作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。

  于是在用t做横坐标、F做纵坐标的坐标系中,就如同一个面积不变的长方形,底边被挤的窄窄的,高度被挤的高高的,在数学中它可以被挤到无限高,但即使它无限瘦、无限高、但它仍然保持面积不变(它没有被挤没!),为了证实它的存在,可以对它进行积分,积分就是求面积嘛!于是“卷积”这个数学怪物就这样诞生了。

  说它是数学怪物是因为追求完美的数学

家始终在头脑中转不过来弯,一个能瘦到无限小的家伙,竟能在积分中占有一席之地,必须将这个细高挑清除数学界。但物理学家、工程师们确非常喜欢它,因为它解决了很多当时数学家解决不了的实际问题。最终追求完美的数学家终于想通了,数学是来源于实际的,并最终服务于实际才是真。

  于是,他们为它量身定做了一套运作规律。于是,妈呀!你我都感觉眩晕的卷积分产生了。 目前,傅立叶变换最重要的应用之一就是可以将卷积方程变成两个函数的乘积形式去求解。卷积分是积分方程家族的一名重要成员。 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 卷积是一种积分运算,它可以用来描述线性时不变系统的输入和输出的关系:即输出可以通过输入和一个表征系统特性的函数(冲激响应函数)进行卷积运算得到。

   以下用$符号表示从负无穷大到正无穷大的积分。 一维卷积: y(t)=g(k)*x(k)=$g(k)x(t-k) 先把函数x(k)相对于原点反折,然后向右移动距离t,然后两个函数相乘再积分,就得到了在t处的输出。

  对每个t值重复上述过程,就得到了输出曲线。 二维卷积: h(x,y)=f(u,v)*g(u,v)=$$f(u,v)g(x-u,y-v) 先将g(u,v)绕其原点旋转180度,然后平移其原点,u轴上像上平移x, v轴上像上平移y。

  然后两个函数相乘积分,得到一个点处的输出。 图像处理中的卷积与上面的定义稍微有一点不同。用一个模板和一幅图像进行卷积,对于图像上的一个点,让模板的原点和该点重合,然后模板上的点和图像上对应的点相乘,然后各点的积相加,就得到了该点的卷积值。

  对图像上的每个点都这样处理。由于大多数模板都是对称的,所以模板不旋转。 把一个点的像素值用它周围的点的像素值的加权平均代替。 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 卷积的物理意义,解释的真幽默! 有一个七品县令,喜欢用打板子来惩戒那些市井无赖,而且有个惯例:如果没犯大罪,只打一板,释放回家,以示爱民如子。

   有一个无赖,想出人头地却没啥指望,心想:既然扬不了善名,出恶名也成啊。怎么出恶名?炒作呗!怎么炒作?找名人呀!他自然想到了他的行政长官——县令。 无赖于是光天化日之下,站在县衙门前撒了一泡尿,后果是可想而知地,自然被请进大堂挨了一板子,然后昂首挺胸回家,躺了一天,嘿!身上啥事也没有!第二天如 法炮制,全然不顾行政长管的仁慈和衙门的体面,第三天、第四天。

  。。。。。每天去县衙门领一个板子回来,还喜气洋洋地,坚持一个月之久!这无赖的名气已经 和衙门口的臭气一样,传遍八方了! 县令大人噤着鼻子,呆呆地盯着案子上的惊堂木,拧着眉头思考一个问题:这三十个大板子怎么不好使捏?。。。。。。

  想当初,本老爷金榜题名时,数学可是得了满分,今天好歹要解决这个问题: ——人(系统!)挨板子(脉冲!)以后,会有什么表现(输出!)? ——费话,疼呗! ——我问的是:会有什么表现? ——看疼到啥程度。像这无赖的体格,每天挨一个板子啥事都不会有,连哼一下都不可能,你也看到他那得意洋洋的嘴脸了(输出0);如果一次连揍他十个板子,他可能会皱皱眉头,咬咬牙,硬挺着不哼(输出1);揍到二十个板子,他会疼得脸部扭曲,象猪似地哼哼(输出3);揍到三十个板子,他可能会象驴似地嚎叫,一把鼻涕一把泪地求你饶他一命(输出5);揍到四十个板子,他会大小便失禁,勉强哼出声来(输出1);揍到五十个板子,他连哼一下都不可能(输出0)——死啦!

县令铺开坐标纸,以打板子的个数作为X轴,以哼哼的程度(输出)为Y轴,绘制了一条曲线: ——呜呼呀!这曲线象一座高山,弄不懂弄不懂。

  为啥那个无赖连挨了三十天大板却不喊绕命呀? —— 呵呵,你打一次的时间间隔(Δτ=24小时)太长了,所以那个无赖承受的痛苦程度一天一利索,没有叠加,始终是一个常数;如果缩短打板子的时间间隔(建议 Δτ=0。5秒),那他的痛苦程度可就迅速叠加了;等到这无赖挨三十个大板(t=30)时,痛苦程度达到了他能喊叫的极限,会收到最好的惩戒效果,再多打就显示不出您的仁慈了。

   ——还是不太明白,时间间隔小,为什么痛苦程度会叠加呢? ——这与人(线性时不变系统)对板子(脉冲、输入、激 励)的响应有关。什么是响应?人挨一个板子后,疼痛的感觉会在一天(假设的,因人而异)内慢慢消失(衰减),而不可能突然消失。

  这样一来,只要打板子的时间间隔很小,每一个板子引起的疼痛都来不及完全衰减,都会对最终的痛苦程度有不同的贡献: t个大板子造成的痛苦程度=Σ(第τ个大板子引起的痛苦*衰减系数) [衰减系数是(t-τ)的函数,仔细品味] 数学表达为:y(t)=∫T(τ)H(t-τ) ——拿人的痛苦来说卷积的事,太残忍了。

  除了人以外,其他事物也符合这条规律吗? ——呵呵,县令大人毕竟仁慈。其实除人之外,很多事情也遵循此道。好好想一想,铁丝为什么弯曲一次不折,快速弯曲多次却会轻易折掉呢? ——恩,一时还弄不清,容本官慢慢想来——但有一点是明确地——来人啊,将撒尿的那个无赖抓来,狠打40大板! 也可以这样理解: T(τ)即第τ个板子,H(t-τ)就是第τ个板子引起的痛苦到t时刻的痛苦程度,所有板子加起来就是∫T(τ)H(t-τ) 。

  baidu。com/a__g/blog/item/10873722cab331ac4723e8f7。html ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 卷积法的原理是根据线性定常电路的性质(齐次性、叠加性、时不变性、积分性等),借助电路的单位冲激响应h(t),求解系统响应的工具, 系统的激励一般都可以表示为冲击函数和激励的函数的卷积,而卷积为高等数学中的积分概念。

  建议你去看看定积分的内容。特别注意的是:概念中冲击函数的幅度是由每个矩形微元的面积决定的。 总的说来卷积就是用冲击函数表示激励函数,然后根据冲击响应求解系统的零状态响应。 卷积实质上是对信号进行滤波。 卷积应该就是求和也就是积分,对于线性时不变的系统,输入可以分解成很多强度不同的冲激的和的形式(对于时域就是积分了),那么输出也就是这些冲激分别作用到系统产生的响应的和(或者积分)。

  所以卷积的物理意义就是表达了时域中输入,系统冲激响应,以及输出之间的关系。 卷积是在时域求解LTI系统对任意激励的零状态响应的好方法,可以避免直接求解复杂的微分方程。 从数学上来说卷积就是定义两个函数的一种乘法。

  对离散序列来说就是两个多项式的乘法。物理意义就是冲激响应的线性叠加,所谓冲激响应可以看作是一个函数,另一个函数按冲激信号正交展开。 在现实中,卷积代表的是将一种信号搬移到另一频率中。比如调制。 这是频率卷。

评论区