在树莓派上可以做深度图像处理或机器学习的模型训练吗?
当然可以。
只不过,考虑到树莓派的性能,比较好的方案是让树莓派做为一个客户端,将图像发送给更给力的机器进行机器学习推理。
比如,Kirk Kaiser就用树莓派自制了一个抓拍小鸟的深度学习相机。
(图片来源:makeartwithpython.com)
上图为整个项目的总体架构。我们可以看到,树莓派连接一个摄像头,在树莓派上运行了一个基于Flask搭建的web服务,通过WiFi网络将图像传给主机。主机上运行基于TensorFlow实现的YOLO模型(可以实时检测目标的深度学习网络)。一旦检测到图像中有鸟,就将图像保存下来。
基于Flask搭建的web服务,让我们能够通过浏览器方便地查看图像。
具体而言,使用的模型是YOLO V2 tiny版本,与完整版本相比,准确率稍低一点,不过好处是算力负担轻,甚至可以在CPU上运行(理论上可以直接在树莓派上跑,当然速度可能会很慢)。
以上图片均来自于Kirk Kaiser的博客文章(/)。
所有代码可以访问GitHub获取:github.com/burningion/poor-mans-deep-learning-camera